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Abstraet--A power integral analysis is performed to study the effect of angle and Prandtl number on the heat 
transfer just after the convective instability in inclined and vertical fluid layers. The form of convection is 
assumed to be transverse rolls. The energetics of the instability are shown to be in good agreement with those 
published by Hart. The variation of the energetics with Prandtl number are used to explain the variation of 
the critical Grashof number with Prandtl number. The heat transfer results are shown to be in good 
agreement with some of the data of Konicek and with the theoretical work of Gotoh and Ikeda. These results 
suggest that the vertical temperature gradient observed in vertical fluid layers may not be as important in 
layers inclined at ~b _< 80 ~ The effect of the instability on the heat transfer is shown to decrease as $ ~ 90 ~ and 

Pr --, 10. 

N O M E N C L A T U R E  

A t, amplitudes; 
ci, constants; 
E t, energetics; 
F, U , W , O ;  
f ,  u ,w,  T o r P ;  
Gr, Grashof number; 
It, values of integrals; 
P, pressure; 
Pr, Prandtl number; 
x, y, z, spatial coordinates; 
St, constants; 
T, temperature; 
t, time; 
U, W, dependence of u' and w' on z; 
u, v, w, velocities. 

Greek symbols 
ct, spatial wave number; 
q~, angle; 
O, dependence of T' on z; 
t/, r integration limits. 

Subscripts 
a, average; 
b, base; 
c, critical. 

Superscript 
r fluctuating component. 

l .  I N T R O D U C T I O N  

1.1. The problem 
THIS paper describes results of a study of finite 
amplitude convection in inclined and vertical, in- 
finitely long slots. The present work is closely related 
to the author's previous work on the stability of the 

conduction regime [1, 2] ; the reader is referred to this 
previous work for a detailed description of the pro- 
blem. The heat transfer in the region just after the 
transition from the conduction regime to the multi- 
cellular convection regime is the subject of the present 
paper, with exclusive consideration given to tran- 
sitions resulting in transverse rolls. The method of 
determining the heat transfer is the well-known power 
integral technique. 

1.2. 7he relevant literature 
There has been considerable interest in the heat 

transfer between parallel plates in inclined and vertical 
positions; both theoretical and experimental results 
are available in the literature. However, most of these 
studies are not relevant to the present work because 
they consider layers which do not behave as if they are 
infinite in the lateral plane or they consider flow 
regimes far from the point of the original instability. It 
has been determined both experimentally (e.g. Eckert 
and Carlson [3], Elder [4], Hart [5]) and theoretically 
(e.g. Gill [6], Raithby, Hollands and Unny [7]) that, in 
a vertical layer, provided the layer is of finite length, a 
vertical temperature gradient will always exist in the 
central region (core) of the layer. This gradient has 
been taken into account, in many stability studies, by 
assuming a base solution first proposed by Elder. It is 
important to keep in mind that, although Elder's base 
solution accounts for the vertical temperature gra- 
dient, it does not satisfy the isothermal boundary 
conditions. The most recent and comprehensive study 
utilizing Elder's base solution is due to Bergholz [8]. 
When the isothermal boundary problem is explicitly 
considered, it is not clear whether it is more a p p r o -  
priate to ignore the vertical temperature gradient, or to 
consider a base solution which does not satisfy all the 
boundary conditions. Undoubtedly neither method 
will yield consistently correct results. The present work 
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does not take the vertical gradient into account. 
There are only two works which deal with finite 

amplitude convection near the instability point for 
transverse rolls in inclined and vertical layers. The first 
of these is the experimental work of Konicek [9] which 
gives heat transfer data for air (Pr = 0.71) at the angles 
~b = 75 ~ 80 ~ 85 ~ and 90 ~ and for Rac < Ra <_ 105. The 
aspect ratio of these experiments was 48. The second is 
a theoretical study by Gotoh and Ikeda [10] which 
gives theoretical predictions of the heat transfer for 
= 90 ~ and Pr = 7.5 (i.e. water). It has been shown (see 
[-2]) that Konicek's transverse roll data [9] agree 
with the stability criteria predicted from linear stability 
theory for only the lower angles (i.e. ~b = 75 ~ and 80 ~ 
and not for angles of 85 ~ and 90 ~ The presumed reason 
for this is that the vertical temperature gradient, which 
was not included in the linear stability theory, domi- 
nates at higher angles. The work of Gotoh and 
Ikeda [10], although containing but one result, is 
closely akin to the present work in that it was done by 
means of the power integral technique; the major 
difference between the two studies lies in the method of 
applying this technique. 

The basis of the current work is the combination of 
the power series stability solutions, as presented in [1], 
with the power integral technique, to obtain infor- 
mation on the heat transfer in the region just after the 
onset of multi-cellular convection (the power integral 
technique as applied in [10] made use of solutions 
obtained by numerical integration using the 
Runge-Kutta-Gill method). Since power series are 
easily manipulated on a computer, the various multi- 
plieations and integrations necessary in the power 
integral technique were efficiently obtained. This al- 
lowed a large range of the parameters ~b and Pr to be 
considered in the present study. 

1.3. Aims of  the present work 
The aims of the work presented in this paper were: 
(a) to develop an analytical technique which would 

be useful for determining the physical importance, in 
terms of heat transfer, of conduction regime 
instabilities; 

(b) to provide a comprehensive energetics analysis 
of the transition mechanism, and; 

(c) to analyse the effect of ~b and Pr on the relative 
importance of the transition to multi-cellular con- 
vection in inclined and vertical fluid layers. 

2. POWER INTEGRAL TECHNIQUE 

The relevant governing equations for convective 
heating in an inclined or vertical slot admit a base 
solution, that is, a solution which allows for heating by 
conduction only. If the transition from this conduction 
regime to the multi-cellular convection regime results 
in steady rolls whose axes are in the y(cross-slope) 
direction, the variables in the governing equation may 
be expressed as 

u = u b + ua(z ) + A,u'(x, z) (la) 

v = 0 (lb) 

w = A,w'(x, z) (lc) 

V = Pb + Pa(z) + ApP'(x, z) (ld) 

and 

T =  T b + To(z) + ArT'(x,  z) (le) 

where x is the up-slope coordinate and z is the cross- 
stream coordinate. The subscript b denotes the base 
solution, the subscript a denotes a spatially averaged 
quantity (averaged over x), Ax, A,, AT and Ap denote 
amplitudes; and u', w', T' and P' denote functional 
forms, periodic in x, and as yet unspecified. 

The power integral technique now proceeds as 
follows: 

(1) Equations 1 are substituted into the govern- 
i ing equations. 

(2) The resultant equations are averaged over x. 
(3) These averaged equations are solved to yield 

T a =  PrArA,{f~ ( T ' w ' ) d z  

- z rl/2 (T'w') dz} (2a) 
j-1/2 

and 

-PrC, rsin,~arA.{f: f: f: (T'w'> dn d, dz 

_ z ( T ' w ' )  

where ( ) denotes an average over x, and q5 is the 
angle of the layer measured from the horizontal. 

(4) The averaged equations are subtracted from the 
governing equations to yield the 'fluctuation' 
equations. 

(5) The fluctuation equations are orthogonalized 
over x and z, the momentum equations with u' and w' 
and the energy equation with T'. After considerable 
algebra, which makes use of boundary conditions and 
the periodicity of u', w' and T', the following equations 
result 

Ax ~x  + A, ~-z = 0 (3a) 

 .u.V 
+ + 

dz \ Oz ] J 
f/ w'V (Ow' 21 I,op' 

+ J J + + t  u + w 

- G r A T  ( s inCu 'T '  + cos~b w'T')))  = 0 (3b) 
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and 

( (PrA=w'T '  
d(T b + T.) 

I- AT 
dz 

(\~x/ +\Oz/ j 
where ( (  ) )  denotes an average over x and z. 
Equations (3) are algebraic expressions for Ax, A~ and 
At .  If the true forms of u', w', T '  and P' were known, 
equations (3) could be solved for the exact values of 
these amplitudes. 

By applying Stuart's [11] shape assumption, the 
primed quantities are now identified with the solutions 
obtained by the linear stability analysis. In this case 

gu' ~w' 
t- = 0 (4) 

dx dz 

therefore, by equation (3a) 

A x = A r (5) 

Also, the pressure term in equation (3b) may be shown 
to be identically zero. 

3. EVALUATION O F  T H E  AVERAGES IN THE P O W E R  
INTEGRAL EQUATIONS 

Stuart's shape assumption [11] implies that u', w' 
and T' have the form 

f ' =  (Re [F] + Im [F]) (cos ax + J sin ctx) (6) 

where F denotes V, W and 0, functions ofz only, and 
is the x-spatial wavenumber. The real parts of the 
perturbation quantities have the form 

Re [ f ' ]  = Re [/7] cos ax - Im [/7] sin ax. (7) 

Interpreting the primed quantities in equations (3) as 
real parts, a general expression for all x averages is 

( f '  g'> = (Re IF] Re [G] CO S 2 0gX 

+ Im [ F ] I m  [G] sin 2 ctx - (Re IF  ] Im [G] 

+ Re [G] Im IF]) cos ~x sin ux). (8) 

Performing the averages over any integral number of 
periods in x yields the expression 

( f '  g ' )  = �89 {Re IF] Re [G] + Im [F] Im [G]}. (9) 

Defining the integrals in Table 1, where D = d/dz,  it 
follows that 

A~ PrGr sin ~b AT A2 
A,Gr sin q~ c I + ~-- c2 - 2 

x c3 + AzI3 - GrAr  (sin q~l 1 + cos ~bI2) = 0 (10a) 

and 

p r  2 2 Az AT 
- -  C 4 -- PrAy12 + A r I  9 = 0 (lOb) 

2 

where 

and 

cl = 1 4 - 1 5 / 2 4 ,  

c2 = I s - I ~ ,  

C 3 = 1 6 - - 1 5 1 7  --I2c 1 

c4 = 11o - 12. 

If the nonlinear terms are dropped from equations 
(10), the critical condition should be recovered. In this 
:ase 

A,  Gr ~ sin ckc I + Az l  3 - Gr ~A r 

x s i n ( 9 l l - G r ~ A r c o s c ~ 1 2 = O  (11) 

and 

A r I  9 - Pr A j 2  = 0. (12) 

and 

and 

where 

Pr 2 C2C 4 
St - (15a) 

4 I3I  9 

Pr 2 c a c2 
$2 - + (15b) 

2 19 213 

Pr 2 sin dp(clc 4 - I2c3) 
$3 = (15c) 

2 1319 

Pr AzI  2 
AT = 19 + pr2A 2 c4/2" (16) 

The preceeding analysis is similar to that of Gotoh 
and Ikeda [10]; however, the original form of the 
equations, and the details of the technique utilized in 
[10], ensure that the two analyses were performed 
independently. It is therefore of interest that, after 
considerable algebraic manipulation, it may be shown 
that equations (4.2) of [-10] and the present equations 
(14) and (16) are equivalent. 

4. SOLUTIONS 

The solutions to equation (14) are 

A== +~[(-(S2+GrS3)++-{(S2+GrS3) 2 

-- -4S1(1-~--rr~)} ' /2)/2S1 ]. (17) 

Only the real values of A z are of interest. Since Gr > 
Grc in all cases where multi-cellular convection occurs, 

It follows that 

Gr c = 1319{Pr (sin dpllI 2 + cos ~I2) - s in  dpcllc}. (13) 

Utilizing this expression, equations (10) may be solved 
for A z and Ar with the results 

S tA~  + ($2 + GrS3)A2z + (1 - Gr~ --0. (14) 
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and assuming S 1 > 0 (calculations for all ~b and Pr 
support this assumption) then the argument of the 
inner root is always larger than 0. It follows that 
the inner root will always exceed in magnitude ($2 + 
GrS3); therefore, in order that A, be real, the positive 
sign of the inner root must be chosen. Taking the 
positive sign of the outer root as the preferred one 
(choosing the negative sign does not alter the analysis), 
it follows that the expression 

Az=X/[(-(S2+GrS3)+{(S2+GrS3)2 

- 4 S l ( 1 - G ~ ) } t / 2 ) / 2 S I ]  (18) 

gives the real values of A s. 
The heat transfer, in terms of the Nusselt number, 

Nu, is 

Nu d(Tb + T,) (19) 
d2 -1 /2  

From equation (2a) and the boundary conditions, it 
follows that 

Nu = 1 + PrATAz lz" 
2 

(20) 

5. THE ENERGETICS 

If equation (11) is considered in light of its deri- 
vation, the various terms may be identified with 
terms in the original equations. Hence, the first term 
arises from the base-flow term (convection), the second 
from the viscous term (dissipation), the third from the 
upslope buoyancy term (parallel buoyancy) and the 
last from the cross-stream buoyancy term (perpen- 
dicular buoyancy). These terms indicate the energy that 
each mechanism contributes to the instability. It is 
customary to scale these energies by assigning the 
dissipation term the value - 1 ;  this is achieved by 
dividing equation (11) by - A z l  3. The result is 

AT ll  r  
- Gr~ sin r ~ - 1 + G r c - -  sin 

A~ q ~  

Ar 12 
+ Grc - -  cos 4) - -  -- 0. (21) 

Az 13 

Using equation (12) to remove the AT/Az term, it 
follows that 

ltI2 cl 
- -  Gr c sin q~ ~a - 1 + GrcPr sin ~b 

I 3 I-----~9 

+ Gr~Pr cos c~ Ii:Ii: = O. (22) 

Table 1. Integrals 

Integral Definition 

j *l/2 
11 {Re [U] Re [0] + I m  [U] Im [0]} dz 

-1/2 

t 
~1/2 

I z {Re [W] Re [0] + Im [W] Im [0]} dz 
-1/2 

t 
~1/2 

13 {G( 2 (Re [U] 2 + Im [U] 2 + Re [W] 2 --~ Im [W] 2) 
-I/2 

+(DRe [U]) 2 + (DIm[U]) 2 + (D Re [W]) 2 + (DIm [ W ] )  2} dz 

f 
l/2 

I ,  (r~/2) {Re [W] Re [U] + Im [W] Im [U]} dz 
J - t ~ 2  

f 
l /2  

15 {Re [W] Re [U] + Im [W] Im [U]} dz 
. 1 - 1 / 2  

I6 f1/2 { (  ) f f f o '  Re [W] Re [U] + Im [W] Im [U] (Re [0] Re [W] 
. 1 -112  

+ Im [0] Im [W]) dr/d~} dz 

fl/2 f~ f~ {Re [0] Re [W] + Im [0] Im [W]} dr/d~ dz 
-1/2 

17 

Is 

I9 

I10 

'I/2 

{Re [W] Re [U] + Im [W] Im [U]} 2 dz 
-1/2 
,l/2 

{•2[(Re [0]) 2 + Im [0])2]+ (D Re [0]) 2 + (D Im [0]) 2} dz 
- i/2 

bi/2 

{Re [0] Re [W] + Im [0] Im [W]} 2 dz 
-1/2 
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The terms of this equation are known as the energetics. 
Individually they are denoted by 

Eo = - 1 

the energy dissipated by viscosity (23a) 

Ec = - Gr, sin ~b (cl/I3) 

the energy obtained from the mean 
velocity field (23b) 

Ell = GrcPr sin dp (1112/1319) 

the energy obtained from the 
parallel-buoyancy field (23c) 

E• = GrcPr cos ~b (1212/1319) 

the energy obtained from the 
perpendicular-buoyancy field. (23d) 

A physical interpretation of the energetics may be 
obtained by examining the definitions of I i. Using 
Table 1, it may be seen that I t is the power extracted by 
u' from the T' field, 12 is the power extracted by w' from 
the T' field, 13 is the viscous power dissipation, and c 1 
is the power extracted from the base flow. The Ec 

therefore indicates the fraction of the dissipation 
energy which is derived from the base flow. For all 
conditions studied, the factor PrI2 / I  7 was found to be 
identically 1.0; therefore, the Ell and E• indicate the 
fraction of the dissipation energy which is derived from 
the parallel buoyancy, due to the perturbation, and 
from the perpendicular buoyancy, due to the per- 
turbation, respectively. 

6. THE LIMITS 

It is informative to study the limiting behaviour of 
dNu /dGr  as Gr ~ ~Gr c and Nu as Gr ~ oo. The  first 
limit will indicate how rapidly convection grows, 
while the second limit will indicate how important the 
first mode of instability ultimately becomes. The two 
limits thereby provide an indication of the physical 
importance of the instability. By taking the limits, it 
may be shown that as Gr ~ Gr~ 

dNu  Pr 2 1212 
(24) 

dGr 2Grc(S 2 + GrcS3)l 9 

and as Gr -~ oo 

1212 
N u  ~ 1 + - -  (25) 

c4 

7. RESULTS 

7.1. Introduction 
Solutions were obtained for the combinations of ~b 

and e r  outlined in [1] and [2]. Some difficulty, 
however, arose for the higher values of ~b and Pr. If the 
computer program used to solve for the desired 
parameters is functioning properly, equation (13) 
should yield values for Gr, which are identical to those 
obtained by the linear stability analysis. In almost all 
cases agreement was obtained to at least eight figures. 
However, for ~b > 30 ~ and Pr > 4, the two sets of 
values began to diverge. Attempts to remedy this 
situation met with only limited success. 

During preliminary program runs, it was found 
that, in order for the two values of Grc to agree, 
approximately twice the number of terms had to be 
used in the power series for the power integral 
technique as in the power series for the linear stability 
solution. This meant that for high ~b and Pr, up to 400 
terms were used in the case of the power integral 
technique. It was suspected that these long series, when 
used in multiplications and/or integrations, caused 
round-offerrors, which lead to inexact results. In order 
to check this possibility, the parts of the program 
which utilized real arithmetic was converted to 
double precision (unfortunately a large part of the pro- 
gram required complex arithmetic which the CDC 
machine used did not support). The improvement in 
the results is illustrated in Table 2 for selected Prs and 
~b = 90. Clearly the use of double precision gives 
significantly better results; however, the effects of these 
precision problems would be far more important in 
integrals which arise in the nonlinear terms, but are not 
present in the integrals used to determine Grc. Since 
there was no way to determine if round-off error was 
indeed affecting these higher order integrals, results 
which depended on them were generally not calculated 
for Pr > 3.0. 

The precision problem discussed above does not 
seriously restrict the application of the power integral 
technique. As shown by Korpela, Gozum and Baxi 
[12], stationary transverse rolls are not the preferred 
mode of instability for Pr > 12.7; therefore, the region 
of interest which the present program cannot analyse is 
very limited. It is unfortunate, however, that water, one 
of the most important experimental fluids, happens to 
have Prs within this region. 

Table 2. Effect of precision on the power integral analysis 

Linear Power integral results Power integral results 
Pr stability results (single precision) (double precision) 

4.0 7859.3711 7836.0988 7859.3711 
5.0 7863.9424 8312.2509 7863.9424 
6.0 7866.6691 8880.0722 7866.6690 
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FIG. 1. Comparison wiih experiments ( present theory; 
(3, O, [-7, A Konicek [9]). 

7.2. Comparison of results with experiments 
Figure i shows a comparison between the predicted 

Nu-Gr behaviour, for the angles at which transverse 
rolls are expected in air, and the experimental results of 
[9]. The present predictions show little change over 
the range 75~  q5 < 90~ the experimental results, 
however, show considerable variation. While the exper- 
mental results for q~ = 75 ~ and 80 ~ agree quite well 
with the present predictions in the range Grc < Gr < 
12 000, the q5 --- 85 ~ results show marked discrepancies 
near Grc but good agreement (possibly fortuitous) for 
12000<Gr< 16000. The (])=90 ~ results seem to imply 
that an entirely different mode of behaviour exists at 
that angle. These results may imply that the vertical 
temperature gradient is very important at q5 = 90 ~ but 
rapidly loses its importance as the angle decreases. 
Obviously, more experimental work is needed before 
anything conclusive can be said about this problem. 
The rise of the data above the predictions is similar to 
that which ocurs in the case of longitudinal rolls at 
low angles (see [13]). In the region immediately after 
the onset of multi-cellular convection, the behaviour of 
the experimental data and the present predictions are 
clearly similar, at least for the two lower angles 
considered. This agreement was interpreted as a 
tentative confirmation of the applicability of the power 
integral technique. 

7.3. The energeticsfor Pr = 0.71 
Figure 2 shows the presently calculated energetics 

for Pr = 0.71. As in 1-2], predictions for which 
transverse rolls will not physically obtain, since longi- 

I -  
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1.0 - - -  "~ - -  " ~  "ON EC 

0.8 \ / /  
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0.6 ~ . / /  

/ \  
/ \ 

/ \ 
! \ , ,  ! 

0.2 / ~"~ E ' 

i [ r I i I , I i I i I L I i I i I 
I0 20 30 40 50 60 70 80 90 

ANGLE 

FIG. 2. Energetics for Pr = 0.71 ( 0  Hart [5]). 

tudinal rolls have a lower Grc, are plotted as dashed 
curves; transverse rolls physically occur only for 
predictions plotted as solid curves. Hart 's results [5], 
obtained by the Galerkin method, are plotted for 
comparison. Agreement between the two sets of results 
is excellent; this provides a further validation of the 
present technique. The trends of the curves may be 
understood by considering the arguments given in the 
next section, where the behaviour of the energetics for 
0 <_ Pr < 10 is discussed. 

7.4. ?he energetics as functions of the Pr 
The cncrgetics are presented as functions of Pr in 

Fig. 3. The most striking feature is the Pr effect at low 
qL For Pr < 1, the energetics of the instability quickly 
approach those for Pr = O, even at angles as low as 10 ~ 
This indicates that, at low Pr and q~ ~ 0, the instability 
always gains all of its energy from the base flow (a 
shear instability). 

The behaviour of the energetics may be explained by 
means of arguments based on a physicalinterpretation 
of the energetics and on Pr effects. The energetics imply 
three sources of energy for the instability: the per- 
pendicular buoyancy due to the temperature per- 
turbation, the parallel buoyancy due to the tempera- 
ture perturbation and the mean thermal field which 
supplied energy to the instability via the mean velocity 
field; the Pr gives an indication of the relative impor- 
tance of viscous dissipation as compared to thermal 
dissipation. 

At very low Pr, the thermal dissipation greatly 
exceeds the viscous dissipation. This means that any 
purely thermal perturbations will be quickly dissi- 
pated. However, since viscosity is low, velocity distur- 
bances may grow. Hence, at low Pr, the source of 
instability energy must be the base flow, as indicated 
by the energetics. At low Pr, the thermal diffusivity is so 
great that this energy may be supplied by allowing a 
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FIG. 3. Energetics at instability. 
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very small (even infinitesimal) change in the mean 
temperature field. It may be seen therefore, that, 
although the instability is classified as a shear in- 
stability, the energy source is still ultimately thermal; 
the energy which is taken from the mean flow must 
ultimately be provided by a slightly altered mean 
thermal field. However, no energy is gained directly 
from the thermal perturbations. Of course when ~b = 
0 ~ no base flow exists, and the instability does not 
occur until conditions are such that the perpendicular 
buoyancy can supply sufficient energy to maintain the 
instability. This explains why the ~b = 0 ~ results are 
anomalous at low Pr;  for even a very small angle and 

Pr small but not 0, base flow exists and may therefore 
be an energy source for the instability. 

As the Pr increases, thermal dissipation becomes 
less dominant and thermal perturbations are aUowed 
to grow. The energy for the instability may then b e  
supplied directly from the perturbations rather than by 
the mean temperature field. There is, however, an 
essential difference between a thermal disturbance 
occurring at low angles and one occurring at high 
angles. Assume that a positive temperature pertur- 
bation occurs at a point in the fluid layer. The 
perturbed particle will rise in the direction opposite to 
gravity. At low angles, this will quickly bring it into a 
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region of lower average temperature (recall the neg- 
ative gradient base temperature in the fluid layer) 
which will increase its buoyant effect. At high angles, 
however, the particle will require a considerably longer 
travel before it reached areas of similar lower tempera- 
ture, simply because at higher angles the gravity vector 
is more parallel to x along which there is no average 
thermal gradient. A perpendicular buoyancy per- 
turbation is therefore inherently able to supply more 
energy to the instability than a parallel buoyancy 
perturbation. 

As well as a decrease in thermal dissipation, an 
increase in Pr implies an increase in viscous dissipation 
and a shear instability is therefore more difficult to 
maintain. For  low angles ((k < 25~ Fig. 3 shows that 
the shear instability present at Pr = 0 loses all 
importance as Pr ~ oo. It would appear that the 
increase in viscous dissipation nullifies the shear type 
instability but is insufficient to suppress the instability 
driven by the strong perpendicular buoyancy. 

For ~b < 25 ~ the behaviour of Eli is very interesting. 
As the Pr increases from zero, the parallel buoyancy 
becomes first an energy source, of quite low strength, 
then, at Pr ~- 0.25, it becomes an energy sink. An 
inspection of the detailed results for the values of the 
integrals showed that, at the point where Eli becomes 
negative, the value of 11 also becomes negative. By 
inspecting Table 1, it may be seen that this negative 
sign implies that u' and T' are out of phase. Provided u' 
and T' are in phase, the temperature perturbation will 
yield a buoyancy which will assist in maintaining the 
instability; the parallel buoyancy would then act as an 
energy source. However, when u' and T' are out of 
phase, the parallel buoyancy provides a force which 
opposes the motion; the parallel buoyancy then acts as 
an energy sink. For  ~b = 10 ~ and 20 ~ Ell continues to 

become more negative as Pr increases. The expla- 
nation for the behaviour of Ell at these low angles is 
probably that here the parallel buoyancy is too weak 
(recall the earlier arguments) to seriously affect the 
solution. The initial rise of E jI may simply occur 
because of the combined effects of the shear instability 
and the perpendicular buoyancy; when the perpendi- 
cular buoyancy dominates the behaviour of the in- 
stability, it would appear that it gives rise to the 
parallel buoyancy becoming an energy sink. 

The discontinuous behaviour of the energetics at (;b 
= 25 ~ indicates the transition to a new type of energy 
balance. Figure 4 contains some new results for Gr c at 

- 25 ~ These results show that the transition at ~b = 
25 ~ occurs abruptly, that is, two modes of instability 
co-exist over a range of Pr and the transition from one 
mode to the other comes about because the solution 
for the mode with the lower Gr c ceases to exist past a 
certain Pr. (These results were obtained by the tech- 
nique o f [ l ]  and [-2]. The method was to search for Gr c 

by taking small steps in Pr and using the previous 
value of Gr c as the initial guess. Searches were done for 
both increasing Pr and decreasing Pr as indicated in 
the figure by the arrows.) The reason for this transition 
is as follows. As the angle increases, the perpendicular 
buoyancy, which depends on the cos ~b, decreases; at 
the same time the parallel buoyancy becomes an 
increasingly strong energy sink. In addition, as Pr 

increases, viscous dissipation increases; therefore, 
more energy is needed to maintain the instability. An 
untenable situation now arises; the instability derives 
almost all its energy from the perpendicular buoyancy 
(which is decreasing with increasing angle), while it is 
being increasingly resisted by the parallel buoyancy 
(which is increasing with increasing angle); mean- 
while, the viscous dissipation is increasing with Pr. A 
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P r - ~  point is reached where the perpendicular buoy- 
ancy simply cannot maintain motion and the low angle 
type solution ceases to exist; the remaining higher Grc 
instability, which admits both a larger energy contri- 
bution from the base flow and an entirely new energy 
balance, is then the only remaining mode of instability. 

The results in Fig. 4 indicate that the discontinuous 
change in the mode of instability occurs only for q~ = 
25 ~. For ~b = 24 ~ at least in the Pr range considered, 
the change of mode does not occur, while for ~b -~ 26 ~ 
the change is continuous, albeit rapid. The reason for 
continuous change at angles higher than ~ = 25 ~ may 
be that at the higher angles the perpendicular buoy- 
ancy is reduced sufficiently that the viscous dissipation 
can effect a gradual transition at a Pr low enough that 
the thermal dissipation is still sufficiently strong to 
help control the thermal disturbance. 

As the angle increases, the Pr = 0 type shear 
instability is manifest at increasing values of Pr. The 
reason for this is that, as the angle increases, the 
perpendicular buoyancy diminishes while the parallel 
buoyancy increases; but, as described above, the 
parallel buoyancy is inherently a weaker source of 
energy for the instability. Therefore, the instability 
must depend more on the energy from the mean field to 
support it. This reasoning also explains why the 
minimum which occurs in Ec near Pr = 1 shifts to the 
left with ~b ; since the parallel buoyancy is weaker than 
the perpendicular buoyancy, viscous dissipation, 
which increases with increased Pr, is more effective in 
suppressing an instability driven by parallel buoyancy. 

The only trend in the energetics not yet explained is 
the decrease in Ec, for ~b > 25 ~ as Pr ~ 10. The 
explanation for this is simply that, as Pr --, oo, the 
problem approaches an adiabatic limit. At this limit, a 
temperature disturbance would act as an adiabatic 
buoyant particle; since the thermal disturbance would 
not propagate, it would not cause a cellular structure 
to form. The result would be a thermal disturbance 
which would cause a motion which in turn would be 
quickly damped out by viscosity. Also, at an adiabatic 
limit, the mean thermal field could not supply energy 
to maintain a shear type instability. Therefore, at high 
angles and high Pr, a perturbation will have difficulty 
maintaining itself (this argument would suggest that at 
high angles and Pr, the ultimate effect of the instability 
on Nu should be greatly reduced). The reason that the 
point where the near adiabatic behaviour becomes 
manifest (the high Pr maximum ofthe ~b _> 25 ~ curves) 
shifts to lower Pr as ~b increases is that the parallel 
buoyancy becomes stronger as ~ increases. (It should 
be kept in mind that at the Prs considered no truly 
adiabatic behaviour is exhibited; however, the concept 
of an adiabatic limit is still valid.) 

In summary, the following regimes of behaviour 
may be identified: 

(a) For small Pr and ~b # 0, E c is 1.0. This is due to 
the large thermal dissipation and the virtual absence of 
viscous dissipation. This regime will be termed the 
shear regime. 

(b) For ~b < 25 ~ and Pr large, Ec ~ O. This is due to 
the fact that the perpendicular buoyancy is so strong 
that it dominates over all other forces. This regime will 
be termed the thermally buoyant regime. 

(c) For all angles, as Pr is increased from 0, Ec 
gradually decreases, while E• and/or Ell gradually 
increase. This is due to the decreased thermal dissi- 
pation at moderate Pr which in turn allowed thermal 
perturbations to be maintained. This regime is part of 
the thermally buoyant regime. 

(d) For th >_ 25 ~ as Pr is increased further, E c 
increases. This is due to the increased viscous effects, 
and consequently, the necessary increase in impor- 
tance of the mean thermal field. This regime will be 
termed the viscosity controlled regime. 

(e) For ~ > 25 ~ as Pr is increased still further, E c 
decreases and Ell increased. This is due to the ap- 
proach to a near adiabatic, parallel buoyant in- 
stability. This regime will be termed the adiabatically 
buoyant regime. 

It is of considerable interest that the extrema of the 
Ec curves correspond exactly with the respective 
extrema of the Grc curves presented in [2]. The above 
arguments therefore explain the variations of Grc with 
Pr presented there. In the shear regime, thermal 
perturbations are damped, and the instability does not 
set in until the magnitude of the base flow is 
sufficiently large to overcome the viscous damping; 
velocity perturbations may then grow. In the thermally 
buoyant regime, the thermal dissipation becomes 
decreasingly less efficient as a damper of thermal 
disturbances ; hence, thermal perturbations grow more 
easily and Gr c decreases. At Pr = 1, viscous dissipation 
becomes more dominant; hence, the thermal distur- 
bances must be stronger to cause instability. But, as ~b 
increases the buoyancy strength decreases; therefore, 
at higher angles the instability will be delayed until Grc 
increases sufficiently to overcome the increased vis- 
cous forces. This gives rise to the viscosity controlled 
regime. Finally, at high Pr and ~b, the adiabatically 
buoyant regime exists. In this regime, the thermal 
perturbation cannot be effectively damped by thermal 
dissipation ; therefore, it becomes an 'irresistible' force. 
This leads to a decrease in Grc. The fact that solutions 
for the critical conditions are hard to find at high ~b and 
for Pr > 10 is probably explained by the fact that at 
high Pr and ~b the parallel buoyancy acts as an 
'irresistible' force, while due to viscosity, the buoyant 
particle acts as an 'immovable' object. The result is that 
any possible disturbance is of small magnitude; hence 
it is hard to predict accurately. 

7.5. The limiting results 
The results for the two limits discussed in Section 6 

are presented in Figs. 5 and 6. The single result of [10] 
is plotted in Fig. 5 for comparison. Unfortunately, 
there are not present predictions for the Pr and q~ 
considered by those workers; however, their datum is 
consistent with the curves here presented. (It is noted 
in passing that the stability criterion given by [10] was 
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independently checked by the method of [1]. The 
previous and the present values are 7876.9557 and 
7876.9584 respectively, agreement to 6 places.) 

The limit results give an indication of the effect of ~b 
and Pr  on the relative importance of the instability to 
the heat transfer. Fo r  low Pr,  Fig. 5 shows that  the rate 
of increase of heat transfer with Gr is very small ;  hence, 
the heat  transfer is little affected by the instability. Fo r  
q~ >0 ,  Fig. 5 further indicates that  the growth rate 

decreases with increasing angle for Pr  > 0.09 and 
increases with increasing angle for Pr  < 0.09. The 
behaviour of the ~b = 0 ~ da ta  is clearly anomalous ;  for 
Pr  < 0.1, the q~ = 0 ~ trend is not  duplicated by any 
other angle. The ult imate influence of the instability is 
best measured as its maximum possible effect, that  is, 
its effect as Gr ~ oo. Figure 6 indicates that, as Pr  

increases, the ult imate effect of the instability de- 
creases. (This is consistent with arguments presented 
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in the previous section.) As in the previous figure, as Pr 

--* 0, no angle gives results similar to those of  ~b = 0. 
Furthermore,  as the angle increases, the limiting value 
initially increases for 10 -2 < Pr < 10 -1 and signi- 
ficantly decreases at higher Prs. In fact, for Pr = 3 and 
~b = 90 ~ the instability ultimately gives rise to a Nu 
increase on the order of  0.25, which is almost six-fold 
less than the ultimate effect of the instability in a 
horizontal  layer. It  is dear ,  therefore, that aside from 
the fact that the stationary transverse instability is not  
the preferred mode at higher Pr and 4, it would not be 
physically important  even if it were the preferred 
mode. 

8. CONCLUSIONS 

The preceding work supports the following 
conclusions: 

(I) The power integral technique, when coupled 
with power series stability solutions, provides a simple, 
efficient method of ascertaining the importance of 
hydrodynamic instabilities. 

(2) A comparison of the present results with pre- 
vious experimental data  suggests that the 'vertical'  
temperature gradient, present in the core of inclined 
layers, is of importance only near ~b = 90 ~ at least for 
air. 

(3) By means of P r  arguments, the energy balance of 
the instabilities has been explained for 0 ~ < ~b _< 90 ~ 
and 0 _< Pr  ~ 10. Four  regimes ofinfluenc~ have been 
identified. 

(4) The arguments presented to accomplish con- 
clusion 3 also explains the behaviour of  Gr c within the 
same ~ and Pr  ranges. 

(5) As ~ --, 90 ~ and Pr --, 10, the effect of the 
instability on the heat transfer diminishes. 
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CONVECTION D'AMPLITUDE FINIE DANS DES FENTES INCLINEES OU VERTICALES: 
UNE ANALYSE INTEGRALE 

R~sum6 - -  Une analyse int6grale est conduite pour l'6tude de l'effet de l'angle et du nombre de Peclet sur le 
transfert thermique juste apr6s l'instabilit6 convective dans des couches fluides inclin6es ou verticales. La 
configuration admise est celle de rouleaux transversaux. L'6nerg6tique de l'instabilit6 est en bon accord avec 
les r6sultats de Hart. La variation avec le nombre de Prandtl est utilis6e pour expliquer la variation du 
hombre critique de Grashof avec le hombre de Prandtl. Le transfert thermique est en bon accord avec les 
donn6es de Konicek et avec les travaux th6oriques de Gotoh et Ikeda. Ces r6sultats sugg&ent que le gradient 
vertical de temp6rature observ6 dans les couches verticales peut ne pas &re aussi important dans les couches 
indin6es fi ~b ~< 80 ~ L'effet de l'instabilit6 sur le transfert thermique diminue lorsque tp ~ 90 ~ et Pr ~ 10. 
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K O N V E K T I O N  MIT ENDLICHER AMPLITUDE IN GENEIGTEN U N D  SENKRECHTEN 
SPALTEN 

Zmammenfass tmg--  Der Einflufl von Winkel und Prandtl-Zahl aufden W/irmeiibergang knapp jenseits der 
Grenze der konvektiven Stabilit/it in geneigten und senkrechten Schichten wird untersucht. Die KOnvek- 
tionsbewegung wird als querliegende Waize angenommen. Die energetischen Verh~ilmisse der Instabilit/it 
zeigen gute Obereinstimmung mit den yon Hart ver6ffentlichten. Die Ver/inderung dieser Verh~iltnisse mit 
der Prandtl-Zahl wird dazu benutzt, die ,~nderung der kritischen Grashof-Zahl mit der Prandtl-Zahl zu 
erkl~iren. Die W~irmeiibergangsergebnisse zeigen gute Obereinstimmung mit einigen der Daten von Konicek 
und mit der theoretischen Arbeit von Gotoh und Ikeda. Diese Ergebnisse lassen vermuten, dab der 
senkreehte Temperaturgradient, der in senkrechten Fluidschichten beobachtet wird, in Schichten die um 
= 80 ~ geneigt sind, von geringerer Bedeutung ist. Es zeigt sick dab der EinfluB der Instabifi~t auf den 

W~irmeiibergang geringer wird, wenn 0 gegen 90 ~ mad Pr gegen 10 geht. 

KOHBEKI~H~I KOHEqHOITI AMrlJ IHTY]lbI  B H A K J I O H H b l X  H BEPTHKAJIbHblX 
II1EJI~IX. HHTEFPAJIbHbI171 M E T O ~  

AmloTaugu  - -  I~HTerpaJIbHblM MCTO,~OM H3yqeHO BJIH~IHHC yr~a HaZaoHa H q~c~a [~paHllTYl~l Ha TCIIYIO- 
HCpeHOC noc~e BO3HHKHOBOHH$1 KOHBeKTHBHO~ HeyGTOfiqHBOCTH B HaI~OHHblX H BCpTHKaJlbHHX CJIO~X 
XH~KOCTH. lIpelllloJ1aracTc~, qTO KOHBCKRH~ HMC0T dpopMy noll0p0qHblX Ba~OB. lIoKa3aHo, qTO noporH 
HeycTofiqHBOCTH xopomo cor~acytoTcs c ony6JIHKOBaHHI,IMH RaHHldMH XapTa. I/I3MCHCHH~I HopoFoB 
HCyCTOfitlHBOCTH B 3aBHCHMOCTH OT qHcJla l'IpaH~TJI~i HCI1OJIb3ylOTC$1 ~JI$1 O6T~lCHeHH~I H3MeHeHH~I 
KpHTHqCCKOI'O qHCJla Fpacroqba B 3aBHCHMOCTH OT qgcJla l'lpaHJ1TJl~l. Pc3yJ1bTaTi,I nO TCnYlOO6MeHy 
xopomo cor~acy~Tcs c 3KcHCpHMeHTaJIhHblMH HaHHbIMH KOHHqeKa H TeopeTHtleCKHMH pa6OTaMH 
['OTO H I/IKe~bl. ~aHHbie pe3y~l,TaTbI yKa3blBalOT Ha TO, qTO BOpTHKaJIbHbIH Fpa~HeHT TeMnepaTypbi, 
Ha6JllOJ1aeMbIfi B B0pTHKa.rlbHblX CJIOSX X(H~KOCTH, HccyKICCTBeHeH B CJIO~IX C yrJlM HaKJIOHa ~b ~ 80 ~ 
IloKa3aHo, qTO BYlH~IHHe HCyCTO~qHBOCTH Ha TeHJIOO6MCH oc~a6eBaeT no MepC TOrO, KaK ~b--* 90 

H Pr-~  10. 


